lews Letter

Mar LAPF1990 .,

AII The News that Fits, We Print

Volume 4 Number 2

LN, T H,1S 1.§S UE
il R ; x4

Letter From Dawck‘(:‘falg(a 1
News From MUSUS 3
Meeuag Mn;utes fJanuazy 1999) &-0r 4
Meetmg Mmutcs (h:bruary 19903 B &4 5
‘*".‘f 4 i &0y b
We G‘gt ‘-[clteﬂs & +i4 6

:_f['r % SR -.j.‘- {‘; ‘4' iy ':T\.‘k ! !: "y f;
Review:Programming Language Trans- : i

tion, a Pracncal Approach : :
o & & ‘_'
'-rAdrﬂiIHSH&tDFSﬂ—* I R) S O .
sk

'Il'easurer sReporm el 8
R«When Prmt Hcads GoBad a-2 4 7 7 9
Real >Integer > Real . bl . 10

iy e A 4 ! o8
Compuung [argc Factorials™s {0 12
Apple Macmtosh Dlalog Phrase Mfanage?& 16
% Programmmg 'Ig 18
) WDS Text 1o Umt FEAESREE gy
Froﬁn Tha Edllai‘ e P XL e40 34

s o o
Submlss;pn Gu:}dehnés |) 35
i & i 7 ‘)

; Copynght 1990, UBUS INC Ammghtsizesemd

The USUS NewsLelter -is puBllshed 6 times per year by

- USUS;; hE- UCSD Pascal byshem User’s: Society, P.O. Box
1148 La Jolla, California 92038 T‘he Newsbetter is a direct
* benefitof membership in- USUS j -

Toth Cattrall deto;‘ o 1
Robert Geesl'm, Ed. D Pubhsher

L A BE Y

Letter From David Craig

Fm: Hays Busch USUS Admin. 70260,306

In a private letter to me dated 10/31/89, David Craig makes the
following comments regarding articles in the most recent
NewsLetter:

In regard to Alex Kleider’s "The Prez Sez" article, I have several
comments.

I think USUS should expand its programming horizon to include
not only UCSD-Pascal but other Pascals and Pascal-derived lan-
guages. Personally I do not program with UCSD-Pascal, but
instead use Apple’s Lisa Pascal and Apple’s Macintosh Pascal
(both of these may be considered supersets of UCSD-Pascal). I
own an Apple ///, but I do not write code that takes advantage of
its unique features.

USUS should (must?) extend its coverage to other Pascals since
UCSD-Pascal and the p-System are no longer dominant in the
microcomputer field. Other languages that I personally would
like to know more about are Modula-2 and ADA. I worked with
ADA in college and found it to be an excellent language for large
projects. One language that must be avoided is C. Even though
C has become the dominant language for microcomputers, it in
my opinion, lacks a solid software engineering foundation. Pas-
cal, Modula-2 and ADA are more in line with modern sofiware
engineering practices than C.

USUS may consider extending its coverage to object-oriented
programming systems (OOPS). I've become very interested in
Apple’s Object Pascal and would like to see more coverage
given to this language and others. OOPS are becoming more and
more prevalent as exemplified by the new object-oriented Pascal
compilers released by MicroSoft and Borland for the IBM PC.

Alex Kleider is definitely correct when he states that USUS’s
main problem is lack of member participation. In my opinion
members of USUS do not participate because USUS has a lack
of focus. The NewsLetter article, "Changes in USUS" states that
USUS is focused on software portability. This is an admirable

goal, but in my opinion is too restrictive. Portable soft-
ware by its definition does not use unique features of
machines. For example, any vanilla Pascal program can
be compiled and run on the Macintosh, but the Macin-
tosh version will lack windows, menus and mouse sup-
port. The majority of Macintosh users would never use a
vanilla program on the Macintosh because the program
is not "Macish". The same applies to the IBM PC world.
PC programs that use only a subset of the PC’s capabil-
ity will not have wide acceptance in the PC marketplace.

I think USUS members will participate in USUS if they
can be actively involved in worth-while projects. 1
would like to see USUS begin several non-trivial pro-
jects aimed at different machines. For example, I've
been working on a cartography program for the past year
for the Macintosh. I would very much like to finish this
program, but my time is limited. If several Macintosh
oriented members of USUS could put some time into a
project of this nature, I think it could be finished in
another year.

This same concept also applies to the IBM PC world.
And if a major project is completed, it may even have
commercial possibilities. I don’t think USUS should
cater to beginning programmers for any machine. It
should instead aim its NewsLetter and library programs
to experienced programmers. Plenty of magazines exist
which cater to beginning programmers. USUS could
never hope to compete against them.

Sb: #COMMENT ON D. CRAIG
Fm: Hays Busch USUS Admin. 70260,306

I think David Craig makes some very valid points. But I
do not agree with all of his conclusions. I would be con-
cerned about pointing USUS exclusively at "experienced
programmers" at the expense of "beginners", since I am
not sure the "experienced programmers" could or would
provide the numbers needed to keep the organization
viable. (If USUS can remain viable even at its present
numbers!)

I do agree that USUS should be more "machine ori-
ented", and to that end I "pushed" the concept of
Machine SIGS as Administrator. Unfortunately, with
the exception of Frank’s work with Apple and Mac, and
to some extent with Ken Hamai in the TI 99/4a area, that
concept did not take hold. So it may well have been
incorrect,

Page 2

I posted this in the USUS Members only section so it
would remain USUS restricted. If any of the BofD or
officers feel this should be given a wider distribution in
an upcoming NewsLetter, I suggest that David be con-
tacted for permission. I can provide his address to any-
one so inclined via EasyPlex.

One final thought. David says he will send me an out-
line of his thinking on the Mac Cartographic program.
Any of you who might be interested in working with him
in developing this, should also let me know. 'David
seems to be a very bright person and from what I have
seen of his TIP program he is an excellent programmer.
He seems to want to help USUS in any way he can.

Sb: D. Craig’s letter
Fm: Alex Kleider, Pres. 71515,447

Dear David,

Hays Busch shared the contents of your recent letter to
him with some of the USUS officials. I would like to
seek your permission to make it an open letter to be pub-
lished in the USUS NewsLetter and also to make a few
comments.

There is not likely to be any disagreement on most of the
points you make. "In my opinion members of USUS do
not participate because USUS has a lack of focus. "
Don’t forget that USUS policy is set by members who
are willing to serve on the Board of Directors and there
is an election due and we need candidates to stand for
two positions. Would you be interested in being a candi-
date? We need people with ideas as to where to take the
organization. Apart from soliciting candidates, my goal
here is to make you see that the setting of focus is a
"member participation" function and so blaming lack of
participation on lack of focus is a circular argument!

I too would like io see programming projects get started
and indeed there has been talk of such things on MUSUS
(a USUS sponsored forum of CompuServe which I
would encourage you to join). The problem however
always gets back to the common problem: participation.
Perhaps if you were to publicly announce your interest in
further development of the cartography program, there
might be others who would like to join you but it’ll take
someone to spearhead such a movement, namely you.

One area in which people will disagree is your comment

about not catering to beginners. We feel strongly that we
should remain a source for those beginners with UCSD

USUS NewsLetter Mar / Apr 1990

p-System related questions since this group has nowhere
else to turn. This function is not a big drain on resources
so I don’t think our disagreement on this issue is of great
significance.

Thank you for your commentis. Please let me know if
we can publish our exchange since [think it would be of
interest to the general membership.

Sincerely,

Alex Kleider, USUS President

Letter from David Craig to Alex Kleider (November 18,
1989):

Dear Alex:

Thank you for your recent letter responding to my com-
ments about USUS’ current direction. You may do what
you want with any of my letters I have sent to any USUS
officers. I have meant none of them to be private to any
one individual. My last letter to Hays Busch was sent to
his Colorado address since all my letters to the La Jolla
address end up in Colorado eventually. Since Hays is

leaving USUS soon I will address my future correspon-
dences to La Jolla.

You are correct in stating that USUS is its members.
Without their cooperation USUS, like many other small
organizations, is doomed to failure. Conceming your
question about me becoming a Board of Directors mem-
ber, I'm not sure I have the "right stuff" for such a posi-
tion. I talked to Frank Lawyer a long time ago about
USUS having an Apple Macintosh SIG. If such a group
existed, I may be interested in working with it on a more
official basis. My time is also limited. [work as a profes-
sional Macintosh programmer and when I'm at home I
like to distance myself from programming. Forty to sixty
hours a week of programming can become tedious no
matter how much a person likes the job.

[will look into the specifics of MUSUS, but I've never
been too thrilled with BBS services. | prefer the US
Postal Service since it is cheap and convenient. My com-
ments to Hays about my cartography program are meant
to be public. If others in USUS are interested in a project
of this nature I would be more than pleased to assist in
the dissemination of my source code for MacCartog.

Sincerely,

David Craig

News From MUSUS
by Harry Baya

Musus is the current name of the USUS sponsored forum
on the Compuserve Information Service (CIS). It serves
as an international BBS for USUS. In prior years, espe-
cially when a lot hackers used Apple Pascal to program
Apple][’s, we had a lot of message traffic on MUSUS.
In the last year or two, for a number of reasons, the mes-
sage traffic related to UCSD Pascal has greatly
decreased. We are in the process of restructuring
MUSUS 1o cover a wider range of interests. The USUS
board approved renaming the forum the "Portable Pro-
gramming Forum" last year and [hope to make that
change and related restructuring "real soon now".

More than half the messages in recent months have dealt

with Modula-2 and we will be promoting this area
heavily when the restructuring is publicly announced.

USUS Newsletter Mar / Apr 1990

For those of you who have put off using CIS for
financial reasons there are programs available for IBM
Dos, Macintosh and Amiga machines that make it very
easy to do most of your work offline, which greatly
reduces the cost. Contact me on MUSUS, by phone at
914-478-4241 or via my almost dormant BBS (The
Pumpkin Patch) at 914-478-7359 if you would like more
information about these programs.

We are actively seeking ways to be make MUSUS more
atiractive to the USUS community and your suggestions
are welcome. One of my personal goals is to build 2
good on-line library of public domain source code in
Pascal and Modula-2. Let me know if you want to help
in this or other areas that would be beneficial to
MUSUS.

Page 3

Staff Meeting Minutes (January 9, 1990)
By Keith R. Frederick

Minutes of the staff meeting of USUS, Inc., held in
room 1 of the MUSUS forum teleconferencing

facility on the Compuserve Information Service
January 9, 1990.

Present at the meeting were:

User ID Name

71515,447 Alex Kleider (AlexK)
74076,1715 Felix Bearden (felix)
73007,173 William Smith (Wm)
73447,2754 Henry Baumgarten (Henry) BoD
70260,306 Hays Busch (AHB)
73760,3521 Keith R, Frederick (KeithF)
72767,622 Tom Cattrall (TomC)
73030,2522 Ron Williams (ronw)
76702,513 Harry Baya (Harry)
72147,3126 Bob Clark (Bob()

Because only one Board Director was present, a
quorum couldn’t be formed and the Board Meeting
was changed to a Staff Meeting. Henry Baumgarten
chaired the meeting. Topics dealt with were:

Helping ont Hays Busch

Alex Kleider brought up the issue of getiing official
status for Felix Bearden to take over some of Hays’
job. Since a quorum wasn’t present and Hays
needed the help with or without the Board’s
approval, a straw vote to approve Felix getting
started was taken.

The vote was unanimously approved. Those who
vated were: Hays Busch, Alex Kleider, Tom Cat-
trall, Harry Baya, and William Smith.

Voting in New Officers

Even though a quorum wasn’t present to approve it,
three positions were up for vote. The following
were unanimously elected:

Stephen Pickett - Keeper of the Library

Tom Cattrall - USUS Newsletter Editor

Keith R. Frederick - Secretary of the Board of
Directors

Alex Kleider, William Smith, Felix Bearden, Hays
Busch, Tom Cattrall, and Harry Baya voted.

Page 4

Journal of Pascal, Ada, and Modula-2 (JPAM)

Arrangements with the publisher of JPAM to pur-
chase the magazine subscriptions were made by
Bob Spitzer. An agreement still has to be made
with JPAM’s editor about a USUS column. Alex
Kleider declared that the issue of JPAM being a
membership benefit was decided and all that is left
are the implementation details. These details will
be handied by himself, Felix Bearden, and Bob
Spitzer.

All renewal letters sent out for the first quarter will
include the JPAM benefit and the new renewel rate
of $45.

The topic of giving current users a full year sub-
scription was introduced, but William Smith
declared that the original proposal was that mem-
bers wouldn’t get JPAM until they renewed at the
higher rate. William also noted that USUS would
lose money on those members who didn’t renew
their USUS membership but still received the free
subscription. Both Henry Baya and Alex Kleider
agreed with William, emphasizing that the original
Board of Director’s resolution must be followed.

Miscellaneous

The winners of the Board of Director’s election will
be known by the next meeting.

Harry Baya stated that he is willing to take respon-
sibility for giving section 8 access to those taking
on USUS responsibilities and would ask for
approval at the next meeting. William Smith and
Alex Kleider agreed with that,

Next Meeting
The Staff agreed to adjourn and meet again at 7 PM
PST /8 PM MST /9 CST / 10 PM EST February

13th 1990 in Rooni 1 of the MUSUS conference
facility,

The Staff Meeting was adjourned at 8:14:47 PM
PST on January 9th, 1990.

Minutes submitted by:
Keith R. Frederick

USUS NewsLetter Mar / Apr 1990

Staff Meeting Minutes (Feb 13, 1990)
By Keith R. Frederick

Minutes of the staff meeting of USUS, Inc., held in
room 1 of the MUSUS forum teleconferencing
facility on the Compuserve Information Service
February 13, 1990.

Present at the meeting were:

User ID Name

71515,447 Alex Kleider (AlexK)

74076,1715 Felix Bearden (felix)

73447,2754 Henry Baumgarten (Henry) BoD
70260,306 Hays Busch (AHB)

73760,3521 Keith R. Frederick (KeithF)
72767,622 Tom Cattrall (TomC) BoD
73030,2522 Ron Williams (ron)

76702,513 Harry Baya (Harry)

72747,3126 Bob Clark (BobC)

Because a quorum couldn’t be formed, the Board
Meeting was changed to a Staff Meeting. -Henry
Baumgarten chaired the meeting.

Topics dealt with were:

Election Results

The winners of the election were Stephen Pickett
and Tom Cattrall.

Meeting Attendance

Alex Kleider suggested that the minutes should
indicate both who showed up during the meeting
and when. This is to provide more information to
the members about candidates for future elections.

Tom Cattrall suggested that making a rule, such as
if a board member missed two consecutive meet-
ings s/he would be off the board, might provide
incentive for board members to attend. Henry
Baumgarten agreed with this measure.

Alex further suggested that the next newsletter indi-
cate the current attendance problem.

USUS NewsLetter Mar / Apr 1990

Felix Bearden’s Proposal

Felix stated that his proposal was to split the
Administrator’s job into two. One for membership
responsibilities and the other for member services.
Felix made clear that he already volunteered for one
of the roles but that he couldn’t do everything.

Because the proposal was posted just before this
meeting, Henry Baya suggested that everyone read
it and prepare to amend or take action on it next
month.

Alex Kleider mentioned that Felix work out his pro-
posal with the people involved on a one-to-one
basis and if everyone involved agrees we will give
it our blessings. Alex also stated that this matter
can be done outside of meetings.

Hays Busch commented on the proposal, indicating
that the membership database and financial monthly
journal should be closely coordinated because they
are required for USUS to run properly. Felix Bear-
den agreed.

New Meeting Time

In order to accommodate more members, changing
the monthly Board (or in this case Staff) meetings
was discussed. While a permanent change was not
made official, a consensus was made to meet on
the second Wednesday of each month at 6:30 pm
PST.

Next Meeting

The Staff agreed to adjourn and meet again at 6:30
PM PST / 7:30 PM MST / 8:30 CST / 9:30 PM EST
March 14, 1990 in Room 1 of the MUSUS confer-

ence facility.

Minutes submitted by:
Keith R. Frederick

Page 5

Prez Sez
by Alex Kleider

As previously mentioned in this irregular column,
USUS appears to be weathering the crisis of dealing
with Hays Busch’s resignation and the switch to a
new NewsLetter editor but the problems are not all
solved and now is no time for complacency.

The last two scheduled meetings of the USUS BoD
turned out to be "non meetings" for lack of quorum.
Items were still discussed by those present but this
is no way to run an organization. Every member of
the Board must be strongly encouraged to attend
each meeting and each member of USUS should
consider lobbying the Board Members to attend and
to represent their interests. It is only based on their
performance at these meetings that you as members
can judge how to vote next time. Pay attention.

USUS depends on it.

One of the problems currently causing great con-
cern is that Felix who has taken over much/some of
Hays’ work has more than he can handle. He needs
help and if it isn’t forthcoming we may end up with
having our records in shambles again as they were
before Hays took over. Other functions such as
IBM/compatibles SIG chairmanship still remain
empty.

Hopefully by now those of you who have recently
joined or renewed are already getting JPAM as a
membership benefit. Let your Board Members know
if this is appreciated. They deserve some credit for
their positive actions as well.

We Get Letters

Keith Frederick
Call for Apple IIGS Users

I was wondering if you could put in a plug in the
newsletter for me indicating that I’m interested in
talking with other users of Pecan’s Power System
for the Apple IIGS. Pecan doesn’t seem to have
any interest in the Apple IIGS, so I figure others
who have a GS and the Power System may be inter-
ested in trading some notes and ideas. Go ahead
and mention my phone number (206-285-1576) and
address, both postal and email if you have room.

Keith R. Frederick

525 West Prospect St.

Seattle, WA 98119
scalawag@blake.acs.washington.edu

Randy Bush
Update on Modula 2 Standard Draft Proposal

The Draft Proposal is out. The US will ballot the
end of this month. The Brits have already voted

Page 6

nay, as it is not seen as ready for prime time.
WG13 meets in early June to review.

Peter Perchansky

Peter in a letter to Alex Kleider wrote to say that he is no
longer on Compuserve and then continued with:

Even though I have stopped using CIS, I have not
stopped programming in Modula-2. 1 have also,
hopefully to your delight <grin>, been putting pres-
sure on JPI to flag extensions in their TopSpeed
Modula-2 product - I am still concerned about
portability issues.

My recent Modula-2 library project is the develop-
ment of the ability to use dynamically allocated
strings: ie. strings that can vary in size, and only
use what memory is necessary - strings whose size
does not have to be declared before compilation
time.

I hope to have it done in time to get published in
the next edition of USUS.

USUS NewsLetter Mar / Apr 1990

James P. Harding

I was going through a book store called Computer
Literacy in the city of Sunnyvale where I ran into a
great UCSD Pascal book. The title is Programming
Language Translation a Practical Approach by
Patrick D. Terry. It provides an in depth study of
concurrency programming (UCSD Pascal parallel
processing) and data abstraction which I am inter-
ested in. Also Mac (LONGINT) long integer and
object code.

1 would like to see UCSD Pascal become an Object-
oriented language. There was a good article in Byte
July 1989 titled Clash of the Object-Oriented Pas-
cals and 1 would like UCSD Pascal to move into
this area.

It was funny how I found the address to get the
source code that is in the book. The book had only
Rhodes University, Grahamstown as the address to
send for disks. UCSD Pascal is so often mentioned
in the book that I tried looking up the author’s
name in the March 1989 USUS Newsletter and
found it there.

There is a nice plug in the book for the UCSD Pas-
cal User’s group UUSUS and it gives the P.O. Box
address at La Jolla to get the source code of the
UCSD Pascal compiler release 1.3 for a project that
could be worked on. Would you please plug this
book in the next newsletter?

Consider it plugged. James’ review follows.

Programming Language Translation, a Practical Approach
by Patrick D. Terry
Addison Wesley Publishing Company

Reviewed by James P. Harding

The book begins with an overview of the translation
process and the constituent parts of a compiler. Fea-
tures of assembly language are covered and an
assembler / interpreter allowing for conditional and
macro assembly is developed.

Formal syntax theory and parsing are introduced. A
recursive descent compiler / interpreter for a simple
Pascal-like source language is constructed produc-
ing code for a hypothetical stack based computer.

Extensions to the simple langvage are introduced,
including procedures and functions, and constructs
to handle the increasingly important areas of data
abstraction and concurrency. The compiler / inter-

USUS NewsLstter Mar / Apr 1990

preter system grows in complexity and usefulness
until the final product enables the development of
quite sophisticated programs.

Address:

P.D. Terry

Computer Science Department
Rhodes University
Grahamstown 6140

South Africa

Page 7

Administrator Sez
by Felix Bearden

It is becoming more and more apparent what a good
job Hays Busch did as Administrator. The fact that
I have not called him more often is a testimony of
his organization of the job rather than either my
reluctance to call or his reluctance to help. So
Again:

THANK YOU HAYS!!!

When the board decided to adopt the "Journal of
Pascal, Ada, and Modula-2"(JPAM) as the "official"
journal of USUS it also decided that all member-
ships expiring after December 31, 1989 would
renew at the new rates and be eligible for the sub-
scription. The board rightly felt that current mem-
bers (members expiring on or before December 31)
could not be supplied the journal because of the
cost to USUS. If you are a current member and
would like to receive JPAM please send your

responses to the following statements to me.
[]I would like a subscription only if it were free.

[]I would be willing to pay no more than an additional
$10 for the subscription.

[11 would be willing to pay an additional $20 for the
subscription.

Send a post card to the USUS address, Attention:
Administrator, or post a message on MUSUS 1o me,
or leave a message at (404)923-4825.

We are about to learn this job. If I’m late respond-
ing or don’t do what you expect me to, let me know,
then remind me, and if that doesn’t work, let me
know and remind me. Meanwhile, I'm going to
have a "cooler" - and thanks for your support.

Felix

Treasurer’s Reports
by Robert E. Clark, Treasurer

January 1990

February 1990

Bank Balance $6,771.34 12-31-89

Income - January 1990

Dues: {new/renew)
Student 0.00 0/
General 170.00 1/4
Profcssional 100.00 041
Institutional 0.00 0/0
Other Income:

CIS 0.00
Library fees 45.00
Publications 0.00
PowerTools 0.00
Total Income: $315.00

Expenses - January 1990

Administrator:

CIS 56.19
Telephone 8.04
Postage 120.55
Printing 162.11
Photocopies 4.60
Supplies 48.01
Other:
Bank charges 2.00
Newsletter 0.00
Mail from La Jolla 6.00
USPS (stamps) 50.00
Reimbursements 0.00
Total Expenses $ 457.50

Bank Balance $ 6,628.84 1-31-90

Bank Balance $6,628.84 1-31-90

Income - February 1990

Dues: (new/renew)
Stadeat 0.00 n/a
General 28000 n/fa
Professional 13600 n/fa
Institational 0.00 n/a
Other Income:

CIS 30.11
Library fees .00
Publications 0.00
PowerTools 0.00
Total Income: $ 410.11

Expenses - February 1990

Administrator:

Cis 116.20
Telephone 45.84
Postage 29.37
Photocopies 9.20
Supplies 13.94
Other:
Bank charges 2.00
Newsletter 33481
Mail from La Jolla 16.57
Reimbursements 0.00
Total Expenses § 557.93

Bank Balance $ 6,471.02 2-28-90

Page 8

USUS NewstLetter Mar / Apr 1990

When Print Heads Go Bad
by Tom Cattralil

A few months ago I noticed that my NEC P2200 24
pin printer had developed a light streak while print-
ing some graphics. At first I thought it was due to
paper positioning problems or a bug in my code but
further investigation showed that the top pin in the
printhead wasn’t working any more.

A trip to the local dealer where 1 had purchased the
printer wasn’t very helpful. They didn’t really want
to work on it and didn’t know what the cost might
be to repair it. The last time they had ordered a
printhead from NEC it was over $400. This was for
a larger printer but as my entire printer cost under
$400, 1 said no thank you and left. A rather unpleas-
ant experience.

emembering some ads in Computer Hot Line for
printhead repair services, [

US Postal Service, the repair, and the return trip via
UPS had taken just a week. 1 was amazed.

I replaced the printhead and it worked flawlessly.
Impact should be congratulated. Such fast and good
service is not all that common these days.

To summarize what they offer:

Repair of printheads: Prices of 9 pin heads are typi-

“cally $35 to $50. A large range of printers and mod-

els is supported. 24 pin heads seem to be in the $65
to $90 range. The highest cost in their list is $145
for a Panasonic 1524. A few cost $125 and all other
prices are less than $100.

Sell refurbished heads: Prices about 50% higher

dug out a copy and ended up
calling an outfit by the name
of Impact Printhead Services
in Austin Texas. The woman I
talked to was very helpful
and told me that it would cost
$65 to repair the P2200 print-
head. So I got an RMA num-
ber but then waited for a cou-
ple of weeks because I
needed the printer and didn’t
want it to be out of action for
several weeks. Finally things

Contact Information

Impact Printhead Services
8701 Cross Park Drive, Suite 101
Austin Texas 78754
(512)832-9151
(800)777-4323

Be sure to call for an
RMA number first.

than repair. Only a few
printer models available.
Factory new heads: Cost

more than refurbished heads.
More selection than refur-
bished but nowhere near as
many as can be repaired.

As an example for a more
popular printer, my 9 pin
Okidata 93 printer would cost
$47 to repair, $65 to buy a
refurbished head ($9.60

quieted down and I sent the
printhead off with a check for $65.

The printhead is easy to remove on most printers,
On the P2200 you just unfasten a large clip, slide
the printhead out of a guide, and disconnect a slide-
on card edge connector from the head. The whole
process took about a minute the first time I did it
and much less after | knew how.

A week later I came home to find a UPS package on
my porch. The entire trip from Oregon to Texas by

USUS NewsLetter Mar / Apr 1990

rebate for an old printhead),
and $115 to buy a factory new printhead ($20 rebate
for old head).

Repairs are guaranteed for 6 months and if they
can’t repair a printhead they return it at no charge.

In summary, if your printer fails because of a bad
printhead, Impact provides a quick and relatively
inexpensive way to get it working again. And with
no hassles.

Page 9

Real->integer->Real
by Harry Baya

The following is from an exchange of messages on the Compuserve Forum. The Code referred to here is shown

on the next page.

From Harry Baya to ALL:

I am writing a program to read a P-system data
file and write out a "portable" data file that can
be read by a companion program in a different
system (TML Pascal on a Macintosh). The TML
pascal will decode the values and write them out
in its own format in the “target" file. This
process will be used for a year or two in several
offjces.

[P-System file] ->]portable file] -> [Mac. File]

I can handle integers and strings ok, but have yet
to find a good way to handle reals. The real
numbers take up 4 bytes in the source file and’I
am willing to use 5 or 6 bytes for each real in the
portable file. This would be easier if I had a
teasonable way to convert:

(a) real to longinteger
and
(b) longinteger to real

Would anyone like to suggest a method for
converting the data or a way to convert between
real and longinteger?

My current solution to the problem is shown
below, but [am not happy with it.

Reply from Tom Cattrali:

Unless you want to get into the actual real
implementations on the 2 machines, what you’ve
got is probably as good as anything else.

You could do a real to long integer by adapting
my real to string algorithm presented in NL 15.
Unless you really want long integer, your method
is probably preferable.

Page 10

Reply from Harry:

Looking back I think it would be more straight
forward to simply take the square rooft of the
nomber rather than dividing by 306. This is
clearly a hacker’s (as contrasted with the expert)
program rather than a state-of-art process. That’s
ok, the others like me will understand it and, with
luck, some of the better programmers will suggest
much better solutions.

Reply from Tom:

Rather than wasting time on a square root, I’d
probably scale the value to be : 0.0 <= X <
10000.0 and then do the following:

partl := TRUNC(X);
part2 := TRUNC(10000.0 * (X - partl));

Thus, partl gives highest 4 decimal digits, and
part2 gives another 4 although not all 4 of part2
will be accurate in all cases. The sign of the
nutber can be passed as the sign of partl since
partl is < 10000.0.

The exponent (scale factor) can be passed in 8
bits so that you are using 5 bytes instead of 6.

Reply from Harry:

Tom, Thanks for the suggestion. 1 prefer your
method to mine. I don’t know that I can pass the
the exponent (scale factor) as 8 bits unless I put
it there as part of a packed record... and I'm
suspicious that the packing might not travel well.
It’s worth trying and I will.

USUS NewsLetter Mar / Apr 1990

{ r2i - Real to integer, uses three
integer values
i2r - Integer to real, uses three
integers to convert back to
real
}
procedure r2i(rl:real; var div306,
rem306, loglO: integer);
var logr, r2,r3,r4, 5, ré : real;
isminus : boolean;
tenfactor :integer;

begin

isminus := (rl < 0.0);
if isminus then rl :=
logr := log(rl):;
logl0 := round(logr);
tenfactor := 6 - logl0;
if (tenfactor > 0) then

r2 := rl * pwroften(tenfactor)
else

r2 :=rl / pwroften(-tenfactor);;
r3 := r2/306.0; {minimize error}

=rl;

div306 := round(r3);
rd := div306;

r5 := r4 * 306.0;

r6 := r2 - 1r5;

rem306 := round(r6);
if isminus then div306 := -div306;
end;

begin
isminus := div306 < 0.0;
if isminus then div306 :
r4 := div306;

= ~div306;

r6 := rem306;
r2 := (306.0 * rd) + ré6;
tenfactor := 6 - logl0;

if (tenfactor > 0) then

rl := r2 /pwroften(tenfactor)
else

rl:= (r2 * pwroften(-tenfactor));

if isminus then rl := =-rl; ¢
end;
begin
repeat
write ('Enter number : ’);

readln(numr) ;
inum := 0;
if (abs(numr) < 1000.0) then
begin
inum := round(numr);
end;
if (inum <> 99) then
begin
writeln;
write('Entered: ' ,numr:12:4);
r2i(numr, div306, rem306,
loglo);
i2r(numr, div306, rem306,

1og10);
procedure i2r(var rl:real; div306, writeln(’returned: 'numr:12:4);
rem306, logl0: integer); end;
var r4d, r2, r6 : real; until (inum = 99);
isminus : boolean; end.
Bug Box by Tom Cattrall
et
I Last summer I was rereading my favorite book on WHILE statements.

| Modula II: Modula-2: Discipline & Design by Arthur
: Sale. He has a separate section in the back of the book
, titled "Other Modula-2 Features" where he discusses
| features of the language that should be avoided
1 because they contribute to error prone programs.

|

I . i

1 The REPEAT statement is the first statement men-
| tioned. The reasons given didn’t seem especially con-
1 vincing to me. Primarily he feels that the REPEAT
| statement isn’t simple to use with loop invariants which
1 are covered in the main part of the book.
1
1
1
1
1
|
|
I
|

As an experiment, | went through a module that I had
recently coded and only tested slightly before setting it
aside. It was about 700 lines long. I searched for
REPEAT statements and tried replacing the code with

USUS NewsLetter Mar / Apr 1990

It came as a surprise that in each case the resulting code
came out somewhat more clear. An even bigger sur-
prise was that I found several bugs in the process.
Maybe he has something there.

A few weeks later, a coworker went out to the field to
fix some problems that were occurring in a previously
installed system. He reported back that many of the
problems he found and fixed involved REPEAT state-
ments. I hadn’t discussed my experience with him so
this was a completely independant observation.

I now regard the REPEAT statement with suspicion.
Has anyone else had similar experiences with the
REPEAT statement?

Computing Large Factorials
by Tom Cattrall

1691 =

42,690,680,090,047,052,

749,392,518,888,995,665,380,688,186,360,567,361,038,491,634,111,
179,775,549,421,800,928,543,239,701,427,161,526,538,182,301,399,
050,122,215,682,485,679,075,017,796,052,357,489,455,946,484,708,
413,412,107,621,199,803,603,527,401,512,378,815,048,789,750,405,
684,196,703,601,544,535,852,628,274,771,797,464,002,68%,372,589,
486,243,840,000,000,000,000,000,000,000,000,000,000,000,000,000

The May 1989 issue of the ACM SIG Small newsletter
had an article that discussed computing the factorials of
large numbers (n!}. The author of that article discusses a
few skeichy details- of how he went about the task of
handling the large numbers that result. Basically, he
seems to have coded up 68000 assembly routines to han-
dle long binary numbers 2 bytes at a time. They worked
but are very slow. To calculate 20365! took around 24
hours. But to convert the binary result to ascii for print-
ing took 32 days. When I read that I figured that another
approach would be faster.

The method I used was to do all computations in a form
of binary coded decimal (BCD). If you want to multiply
1234 * 5678 the operations look like:

1234

5678
T 9872
8638
7404
6170
7006652

The numbers could be represented as digits in arrays of
0..9 so that the values would be stored one digit per array
element with the least significant digit stored in the first
element. The numbers from the example above would be
stored as:

]
n
1]
]

nifl]
n2f1]

4, nl[2}
8, n2[2}

3, nl[3]
7, n2[3]

2, ni[4]
6, n2[4]

Then to do arithmetic, use for loops to deal with the indi-
vidual digits in the same way you would do it by hand.

Page 12

Thus to add nl + n2 giving n3:

FOR i := 1 TO 4 DO
n3[i] := nlfi] + n2{i};
IF n3[i] > 9 THEN

n3{i+1] := n3[i+1] + n3[i] DIV 10;
n3[{i] := n3f{i] MOD 10;
END;

END;

The above code fragment isn’t complete or general but
it illustrates the basic idea. Printing out the result is triv-
ial:

FOR i := 4 TO 1 BY -1 DO
WriteCard(CHR{ n3{i] + ORD{'0’)) , 1);
END;

WriteLn;

You can see that this approach is much faster than that
described in the article, if for no other reason than that
the conversion to ascii for printing is going to run in a
matter of seconds rather than days.

For doing factorials however, we need a somewhat more
complicated loop to multiply. Rather than code up a gen-
eral purpose multiply routine to handle 2 large values in
the format above, | made some simplifications in the
interest of gaining speed.

First, I decided to keep the muitiplier as a normal integer
and save the longer and slower format for the resalt. For
a 16 bit integer, this means that the code will be limited
10 32767!, a very large number.

USUS Newsletter Mar / Apr 1990

The second improvement is to keep more than one digit
per array entry. Thus, each array entry contains (0..99
rather than 0..9. By using 0..99, we cut the storage
requirements in half, and because each step will operate
on 2 decimal digits, the time required will be roughly
half. The printing of the result is slightly more compli-
cated because we need to split each array entry into n3[i]
DIV 10, and n3[i] MOD 10 and print the 2 digits sepa-
rately. The time penalty for doing this is minor though
compared to the savings we get.

The resulting multiply loop can be seen in the final list-
ing given on the next page. The inputs are the current
value of the multiplier (m), and 2 large numbers: the
input value and the result. nbWords says how many array
entries are currently in use so that we save time by not
traversing unused zero entries when doing smaller num-
bers. Because the routine uses one array and stores info a
_ second, the caller allocates 2 arrays and alternates calls
so that the array that held the result from the last call is
used as input for the next call. This saves having to copy
the result array to the input amray before doing the next
call.

The main program loop and the multiply procedure were
easy 10 code up and get running. Formatting and printing
the answer, which should have been an afterthought,
caused me quite a bit of grief. I just threw some code
together so [could see the results. Sure enough, all of the
digits were printed, but the formatting was sloppy. What
I wanted to see was nicely aligned rows like those in the
number at the top of the previous page. What I got was a
poorly aligned mess that showed that I had better take
the formatting code seriously too. I made a couple of
attempts at paiching it but things didn’t get better, just
changed symptoms.

So 1 started over and actually thought about what I
needed and how to do it. The resulting code first com-
putes how many lines of output we’ll have. Then the
number of leading zeroes for the first row is found by
taking the difference between how many digits we think
we’ll get and how many digits fit if all the lines were
full. If there is only one row I don’t bother with any
alignment and nbLeadingZeroes is set to 0.

USUS Newsletter Mar / Apr 1990

Then the leading zeroes are output using the WriteDigit
routine. This is followed by a loop to output all of the
digits, 2 per word. The WriteDigit routine handles the
suppressing of leading zeroes, the line ending and left
margin, and uses PrintComma to put out a comma at the
proper time. The number of digits remaining to be
printed is passed around so that WriteDigit and Print-
Comma know when to take action.

The result of all this is a routine that can compute the
factorial of large integers in a much shorter time than the
binary approach described in the ACM article. The time
required to compute 169! is 0.5 seconds on a 16 Mhz
68020. Trying a few other values gives the following
table:

N Time(Secs) Digits In Result

169 0.5 305
500 6.3 1135
1000 208 2544
2000 136 5513

The time seems to be order N squared which is what
you’d expect for this code. The numbert of digits in the
result seem fo be order N.

I changed this routine to Pascal and ran it on a MicroVax
III using 32 bit integers and 4 digitsPerWord. The time to
compute 20365! was around 3 hours. On my machine
the time was about 5 hours. The result has 78909 digits.

What good is all of this? Well, I don’t know of any good
use for the actual values of large factorials. The method
of doing arithmetic on large numbers is useful in general.
An entire large integer package can be coded uvsing this
general approach. I found the exercise interesting for two
reasons.

First, I suspected that this approach would show an
improvement over the speeds reported in the ACM arti-
cle. As can be seen, the speed difference is very large.

Second, I learned that the "trivial" detail of formatting

the output deserved just as much care as the algorithm
that [set cut to work on in the first place.

Page 13

{suTIIads3thbTp
A1d (T - SUTTISgSITETP + SPAOMAU + promIags3iTthTp) =: ssuriqu

{+ 3uTad 3snum om yonuw moy 230dwod 481ts %)

NaHL (T =

1{, ,)®3TIm
NEHBL OH@N@G,.HUGO.H aI
€ oK u) anv (g =< u) 41
RIDad

HISad
INVAIOOH oxazburpest
{qunonjtbrqe sathTaqu
ITVNIQEYD @ seoIozbuTpesTqu
INNIQEYD ¢ saUTTqU
ITNTQEYD ¢ T
a¥A

‘seumiod Ag pajeredss ¢ jo

sdnoxb uT s3THTP ST FemIod "3TNE3A oYY INC SIUTIJ
w)
{(zaqumyabivIe @ I ¥Y¥A) ISMSUYSLITIM TUNAIDOUd

{37BTge3TIM GNE

IT-u=tu
{aNa
{ana
{{ urbaew3zeT)BUTIFSOITIM
fugsyTam
NauL (1 = (surzragsitbtp aoW u)) any (o < u) 4T
{{ox2aZbUTpEsST ‘u)emwoDluTIg
igsvd =: oxagbuTpesT
H{p+ (o.)ado JuED)=3TIM

as871a
{{oxagburpesT ‘u)ewmopniutig
t{, ,)o3Tam
NEHL oxsgburpesT any {0 = p} 4T
RIDHAY

™
‘poqutad sq o3 urtewsi sythrp
Auewm moy sT u "pajurad ST 3THTP oxszuOU SITI 28Ul
IT3UD ANPL ST oxazburpesT 'p 31bTp 2TbUTSs ayjy sjurzg
*)

t{(3tbrQe : P
izunodaThTge u ava
INVEIOONd oxszbuTpesT YVA)ITHTAe3ITIM TUNAIDI0Ed

{PWIODIUTIA AN

(x
*a5k pajurad useq saey s31THTP oxsz uou Aue Iayjeum skes
ozezbulpesI ‘peojurad jsnl 3TBTP 8yj Jo Joqumu ayj} ST U
¢ Jo sdnoxb ojutr s3rhTp 2y3 23exedas
0] Tuuwod e JUTIA 03 swll ST 3T JT 98 03 SYODAYD
=)
{(gyaTo0dg : ozxezbuTpeay ! JUNODITLTQE : U)euMoO)3UTIA HENGEDOHS

{ 1oqunyebIeIe 1 Z3
13

iXopurgNabaeIe ¢ spaomqu
{TYNIQEYD @ I=qumu

{xopurqnebreTe : T
YA
I'"INNIQEYD 40 Xepulqnebrede Ividy = JIaquuNabIeTe
{[{paopaegsiThTp AIQ S3THTAqU) ** 1] = xopurgnebieTe
{[sathraqu-*gl = 3Junopathrge
{60l = ITBTaR
HdXL
{+ Iono®eIEUD UIN3SI oberires TTOS® x) el = ao
(» 2UTT 3ndano zo3 uthbiew IS8T) £, . = uthbIeWaIeT
{+ 2UTT 4andano ut s3TETP Auewm Moy) igF = sUTTIS4S3THTID
(x» PTOMISISITETP. OT «) 1001 = anfeAsliq
(« pIOoM x0d 3oed oM s3TBTp Aurw moy &) {7 = pIopmragsithrp
{x Jomsue utr s3THTP I=qUNU Xew) {D000E = sa1bTaquU
LENOD
{pxespesy

‘pIERIITIM ‘B%TAM ‘BUTIISOITIM ‘UTITIM LHOANT INOUI WOHJZ

(x
"STTERSp I0J HEAJADOEd
ATdT3TnH 243 o895 *pIos e ojur payoed siTHTp aIo0uw o
JUO YITH TeWIoap pspoo Axeutrq Jjo wrog ' Bursn aT3Lum3TIe
butop Lq pajndwoo sq o3 s3fnssx abrer Azaa I0I sMOTT® 3T

swexbord 9y3 uf psuriyep s3Thraqu IsSNOD ®43 &g PpPe3TWIl ST

it ITNS3I 53Uy Fo 9ZTS§ 2yl "Iobajur 3eyl JOo TerIojoeI oyl

ianz seandweo uayly pue xsbsjur ue oy sidwoxd weiboxd sTYL
(.7, Ye3Tan %)
25714 {TeTI0l0ed HINGAOW

USUS Newsletter Mar / Apr 1990

Page 14

“f{erIojoed QNI
1UTSNTIM

fand

{{ T3)ISMSUYSITIM
a518

{{ z3)TsmsuyaaTam
NEHL { Ioqunu }gdo 4T

‘ana
ignNE
{{{az) HD)eaTIN ({8 ‘T)pIedsaTam
NEHL 0 = Q0T 4OH T 41
IQNE
0 1y ‘23 't YETETITOW
2STA
(0zF ‘13 ‘T JETETRTON
RauIy (T)lago A1
Od Isquinu Of # =t T ¥od

) IUTaZTIM
{(,TeTI0oqo®RE , JBUTIISSITIM
{{T ‘xequmu }pIea3TIM

{(, burandmoy,)BUTILSSATIM
IoganTam.

!{{ Foqunu }pIespesH

TeTIcloey I0F enTea Iajug,)buraggegrapm

NIDAT

{ATATaTUH GN3F

Heliics
I - SPIOMUGH =: SPICMU
0od 0 = [spxomqulanc FITHM

18 + SpIOMQU =: sSpXomqu

Hatiks
id + [L1ano =: [[]ane
{ang
it +C=rC
{entepasafiq AT@ d =t d
{anTeaslAq qolW 9 =i [[lano

{[Cl3no + d =: d
0d anTeA®3ig =< [(]3no + 4 TITHM
T ¢
fTiur » w =: d

s o

oQ SPIOMQqU O T =: T ¥od

{and

g =: [Tlane
00 8 + SPIOMQU OL T =: T ¥od

igRa

{LTYH

{uTenTaIM

(g ' w)pzepentim

i, = N 3% morixsas ,)butizsezTam
NHHI PIoMIadsiTBTp ATQ S3TBTQQU =< 8 + SPIOMQU 4T

NIDdg
ITYNIQEYD d
{TYNIQEYD ¢ (S

*,300, Taqunu ebieT SY3 OJjUT JTNESAI BYUY
soeTd pue W, sniea syj Ag ,uUT, Iaqunu obIeT] 243 ATITIToM
Y
{{TequnNsbIeTe 1 N0
‘uT ¥va

{TYNIQEYD w JATATITOW TMNAID0da
! TOMSUYRRTIM OGN
IUTe3TIM
taNd
t{or gom ([Tl3) ‘sathTaqu ‘oxazbutpesT)1TBTC®3TIM
i { o1 ata [1l3) ‘satbrqqu ‘oxezbutpear)3ThTtgaiTim
od - X8 T OL SPICMQU =: T ¥Od

(+ z = promMI=ds]THBTP uo spuadop apod dool Jo4 BUTMOTTOT BY3 &)

QN
{{o ‘s3tbraqu ‘oxszburpeal)3TETOLa3TIM
oG ssoxagburpesIqu OF T =¢ T WOd
{x sjyuelq butpesy andano) 1AN¥L =: oxszburpesT

{{urbIenazeT)PUTIAS9ITIMN {UWTSITIM

i, = 1,)butasgeytam { (1 ‘Isqunu)pIenelTam
IUTITIM

{gNE

ispIoMqu x pIomILgsaTBTP =: s3thrgqu

{0 =¢ ssoIszbuTpeaTgu
g57Td

{ {(suTIxads31BTP » SBUTIQU) =i sS3ThTaqu
{spIoMqu » PIOMISISITEID
- JTTABSTBTP » SouUTIqu =: sSs0IaZbuTpeaIqu
NHHL 1T < S{upTqu 4T

Page15

USUS Newsletter Mar / Apr 1990

Apple Macintosh Dialog Phrase Manager

David Craig
9939 Locust # 4013, Kansas City, MO 64131

Introduction:

The Macintosh Toolbox provides several powerful routines that create and manipulate dialogs.
Dialogs are special windows that can contain text, various types of buttons, editable text areas, and
graphics. But with this power comes a lot of programming difficulties. Dialogs are easy to create
using one of the many Macintosh resource editors, but handling them from a program can become
complicated. Many times a programmer only needs a dialog to display some text for the user and have
at most several buttons that define different choices. For example, when a user quits a Macintosh
program a dialog usually appears asking if the active document should be saved. Associated with the
dialog are two buttons labeled "Save” and "Don't Save".

In order to simplify both the creation and manipulation of dialogs that contain only an icon, text, and
buttons I created the Dialog Phrase Manager unit. The programmer need not be concerned with
defining the location and dimensions of the dialog. The Dialog Phrase Manager automatically centers
the dialog just below the menubar and makes the dialog box fit both the text phrases and the button list.
This unit is written in MPW (Macintosh Programmer's Workshop) Pascal and should easily be
portable to other Macintosh Pascal compilers.

About the Dialog Phrase Manager:

This unit allows Macintosh programmers to define, display, and handle special Macintosh dialogs.
These dialogs consist of an icon in the upper left, textual phrases in the middle, and a vertical list of
buttons in the right portion of the dialog window. The dialog is defined as a standard "STR#"
resource. . The first line contains the Header fields, the following lines contain the dialog textual
phrases, and the last lines contain the button names. A default button can also be defined so that the
dialog user can select it using the keyboard. Several standard phrase arguments exist that will
automatically be replaced by other phrases. For example, the phrase "Hello A1" will be expanded
using the current value of the argument phrase A1, If A1 is defined as "David", then the phrase
becomes "Hello David". Several arguments exist with the names "A1", "A2" .., "A12",

Having the dialog definition defined as a Macintosh "STR#" resource makes modifications to it very
easy through either the resource text source file or through a Macintosh resource editor such as Apple's
ResEdit desktop application.

Using the Dialog Phrase Manager:

Before using the Dialog Phrase Manager the standard Macintosh managers must be initialized (your
application should do this). The first routine to call is the initialization routine PM_Initialize. The last
routine to call is PM_Terminate. Both return an error result which you should test. PM_VersionInfo
returns a string containing the version number and compilation date and timeé of this- unit.
PM_ShowDialog is the major routine of this unit. It displays the dialog and handles the user's
interaction with it. PM_SetArgAlert sets up phrase arguments. This provides a simple method of
customizing dialog messages. PM_BeginWait displays a non-modal dialog that does not contain any
buttons and returns immediately to the caller. Call PM_EndWait to remove the dialog from the screen.
These two calls are useful when you wish to inform the user of an activity that requires some period of
time. PM_GetPrivateCursor extracts the cursor data for the various special cursors that this unit can
use. These cursors are normally accessed from the dialog definition’s cursor fields. To print the text
of a dialog use PM_PrintDialog. This displays a dialog informing the user that the dialog is being
printed. This displayed dialog is specified by you by its dialog resource ID. When a dialog is
displayed the user can select the buttons in several different ways. Pressing a button with the mouse
selects the button. Pressing the keyboard Return or Enter keys selects the default button (surrounded
by a dark outline). Pressing a keyboard function key (F1-F15) selects the corresponding button.

Page 16 USUS NewslLetter Mar / Apr 1980
ag :

E.g., if F1 is pressed, the top button (#1) is selected. Pressing F2 selects the next-to-top button (#2),
etc... Note that at most 15 buttons may exist within a dialog. If you include more buttons in the
dialog definition than allowed an error is returned.

Sample phrase dialog definition:

This definition is for a dialog that contains an icon, several lines of phrases, and two buttons. The
definition is implemented as a Macintosh "STR#" resource and is written for the MPW development
environment's Rez tool. All button names occur at the bottom of the definition and begin with a "~"
character. The default button contains a "!" character after "~".

resource 'STR#' (143, nonpreload) { {
/* iconID/IColor/FKind/FSize/FColor/inCursorID/outCursorID/parms */
"128/red/geneva/9/black/32000/0/65",

/* phrases */

"Node 2 version A1 [A2]\n\n",

"Current program bugs and unimplemented stuff\n\n",

"1) Phase II of Node 2 is not implemented. It will contain the smarts of this program ",

"and will fix the various problems that can occur with a title. Note that Phase II ",

"allows the operator to edit any title sheet in any way\n\nAll of the above bugs and ",
"unimplemented features are currently being fixed by David Craig. If other bugs occur ",
"while you are using this program please document the problem on the Node 2 Bug Report ",
"from the Print Bug Report menu. Any comments that you have about any part of this ",
"program are welcome.\n\n-- David Craig”,

/* buttons */

"~1Continue", /* 1 (default button) */
"~Print" 2%/

1

Sample dialog display:

Node 2 version 0.4.5 [4/7/89]

Current program bugs and unimplemented stuff:

(vt J

1) Phase Il of Node 2 is not implemented. It will contain the smarts of this program and will
fix the varisus problems that can ccour with a title, Note that Phase I} allows the eperator
{a edit any title sheet in any way.

All of the above bugs and unimplemented features are currently being fixed by David Craig,
If other bugs oceur while gou are using this program please document the problem on the Print
Node 2 Bug Report from the Print Bug Repert menu. Any comments that yeu have about amy

part of this program are welcome,

== David Criig

That's all, Folks ...

USUS NewsLetter Mar / Apr 1990 P.aga 17

Programming the Macintosh

by David T. Craig
736 Edgewater, Wichita, Kansas 67230
(October 31, 1988)

INTRODUCTION .
Writing programs for the Apple Macintosh is very different than writing programs for conventional
computers. The Macintosh's use of windows, menus, and the mouse give it a distinctive look and
feel. Conventional computer programming is based upon reading character keystrokes, writing
characters to the screen, processing the keystrokes, and repeating this ad infinitum. The Macintosh
extends this programming methodology in a more general manner. Instead of waiting for keystrokes
the Macintosh waits for events. Instead of writing characters to the screen the Macintosh draws
images in windows.

THE TOOLBOX

The Macintosh software foundation rests upon the User Interface Toolbox managers, a set of about
500 routines implemented in 68000 assembly language that reside in the Macintosh ROM. These
soutines implement windows, menus, dialog boxes, and the other elements of standard Macintosh
applications. The Toolbox's main managers are QuickDraw (provides the foundation for windows
and draws everything on the screen), the Event Manager (handles event detection), the Window
Manager (creates windows and handles user window manipulation), the Menu Manager (displays the
menubar and the pull-down menus), and the Resource Manager (handles all access to Macintosh
resources)

THE MAIN EVENT LOOP (MEL)

Every Macintosh program contains a Main Event Loop (MEL). This loop waits for events to occur
and handles the events. A Macintosh event is any activity which causes the application to do work.
The Event Manager supports 16 different event types which describe such activities as pressing the
mouse button, pressing a keyboard key, and inserting a disk into a drive. The Pascal code for a typical
MEL appears as

VAR myEvent : EventRecord; { Macintosh event record }
REPEAT { fetch an event from the Macintosh }
IF GetNextEvent (EveryEvent,myEvent) THEN
BEGIN { handle the event as needed }
CASE myEvent .What OF

MouseDown : handle mouse button down event
MouseUp : handle mouse button up event
KeyDown : handle key down event
AutoKey : handle key repeat event
Activatelvt : handle window activate event
UpdateEvt : handle window update event
DiskEvt : handle disk insertion event
DriverEvt : handle driver event
NetworkEvt : handle network event
AppllEvt : handle application-defined event
Appl2Evt : handle application-defined event
Appl3Evt : handle application-defined event
Appl4Evt : handle application-defined event
END;
END;

UNTIL done;

MACINTOSH RESOURCES

Every Macintosh program file consists of a set of resources. These resources contain descriptions of
various pieces of the program. For example, menus are stored as resources. Resource compilers
convert textual descriptions of program resources into resource object code and link the resource code

USUS NewsLetter Mar / Apr 1980

Page 18

into the application code. For example, the resource description for a menubar which has two menus
titled File and Edit would read:

type MENU type MENU
,128 ,129
File Edit
Quit Cut
Paste

The Toolbox Resource Manager provides calls that extract resources from applications. Resources
make modifications to application phrases and menus very easy. Using a resource editor, such as
Apple's ResEd, a person who knows nothing about the internal coding of an application can easily
change the application menu phrases.

MACINTOSH WINDOWS and PRINTING

All displays for the Macintosh occur within windows, rectangular areas on the screen which act like
pieces of paper. The Window Manager allows window creation, deletion, movement, and resizing.
Windows can also overlap one another. Drawing occurs within a window when the application
receives an update event that tells the application to redraw a window's contents. Printing on the
Macintosh is also very easy and powerful. The Toolbox Print Manager provides an off screen
window which applications draw into. Low-level printer drivers, which implement device—-
independence, convert application drawing commands into device—specific commands for physical
printers. The printer driver handles device resolution differences so that images appear the best on
both 72 dpi dot—matrix printers and 300 dpi laser printers.

MACINTOSH DEVELOPMENT ENVIRONMENTS

Many different programming environments exist for the Macintosh. Since 1984 I have used Apple's
Lisa Workshop and Lisa Pascal compiler to produce one commercial and many non—-commercial
applications. Lisa Pascal is a very powerful extension of UCSD-Pascal. As such it compiles any
UCSD-Pascal program that does not contain device specific calls. Apple's Macintosh Programmer's
Workshop (MPW) and MPW Pascal succeeded the Lisa Workshop. Other programming
environments and languages (such as C, Forth, and Fortran) exist for the Macintosh but from my
experience many of them don't provide the same professional qualities as either the Lisa Workshop or
MPW. For example, LightSpeed Pascal has minimal UCSD extensions so UCSD-Pascal programs
can't compile with it. The Macintosh ROM Toolbox is Pascal-oriented since the original development
was done in Lisa Pascal.

INSIDE MACINTOSH

The definitive documentation for Macintosh programming is Apple's Inside Macintosh (IM). This
book, currently a set of five volumes, describes everything a programmer needs to know about the
Macintosh from how to create a window to reading data from a serial I/O port. IM contains several
dozen chapters each devoted to a Toolbox manager. One chapter titled User Interface Guidelines
describes in detail the user interface philosophy behind all Macintosh applications. All serious
Macintosh programmers in my opinion must have this book. Besides reading IM I recommend
Stephen Chernicoff's Macintosh Revealed and Scott Knaster's How to Write Macintosh
Software. Chernicoff, one of IM's technical writers, presents the main concepts embodied in IM in a
very readable fashion. IM requires its readers to be familiar with all the Toolbox and Operating
System managers which for some programmers is very difficult reading. Knaster, a member of
Apple's Macintosh Technical Support Group, provides many important techniques for more advanced
programmers. If you are serious about programming the Macintosh his book is a must.

SUMMARY

Writing programs for the Macintosh is both involved and rewarding. Every Macintosh application
must provide the standard user interface items such as windows, menus, and device—independent
printing. The rewards appear because correctly programmed applications are easier for the user to use
and require less time to learn.

<<< The End >>>

USUS Newsletter Mar / Apr 1990 Page 19

WDS Text I/O Unit
by William D, Smith

This is the unit which I use for reading and
writing text files. I wrote it for three main
reasons. First, the Pascal read and write
procedures are too slow, second, I needed a way
of reading files backward and third, I wanted to
be able to append text to a file when there was
room between the end of the file and the
beginning of the next file. Since I didn’t want to
redo the system stuff where I didn’t have too,
this unit is coupled tightly with the system. The
system opens the files and sets up the file
information blocks (fibs). The unit then does
the reading and writing, modifying the fibs as
needed. Originally when I first started this unit,
I tried to set the buffer size to one page so that [
wouldn’t have to worry about handling even and
odd blocks differently. This wasn’t possible
because F_LastByte, F_MaxByte, F NxtByte
are declared as 0..512 in the Kernel unit and
some strange-results were produced when
switching between what the system does and
what this unit does. The systems works is done
through calls to my file I/O unit, 7_10_u.

A text file consists of a 1K byte header and one
or more 1K byte pages. One page is treated by
the system as two 512 byte blocks. This means
text files always have an even number of blocks.
Each page, except the header, consists of lines
which consist of the DLE character, the number
of spaces at the beginning of the line + 32, the
characters in the line followed by an end of line
{EOL) character. A line (in a well defined text
file) never crosses a page boundary. If the last
line of the page is too long for that page, the
page is filled with the zero character and the line
begins on the next page.

This unit only supports reading lines. There is
no way to read less then a full line. For output,
you can write lines (or partial lines) to a new file
or append lines to the end of a file with p_x1n.

For input, you can read the first line, the next
line, the current line, the previous line and the
last line with the get procedures (prefixed by
"s_"). Each file has a location associated with
it. This location is always at the beginning of a
line (or after the last line of the file). All input
is referenced from this location.

The buffer, ¥_Buffer (which is part of the
system fib) contains a copy of the current block
(the location is in this block) of the file. This
block is either being read or written. Beside
interfacing to the system fib, the only real work
involved in writing this unit is in handling the
pages as two blocks where only one of the
blocks is in the buffer at any time. Since the
blocks are treated differently depending on
whether it is the first or second block of a page,
you have to detect this. (A line can cross the
first block boundary but not the second block of

a page.)

For those who have been following the discus-
sion on MUSUS on external error detection, this
unit gives examples on how I prefer to do it.
The function WriteBuf returns true if
everything worked and false otherwise. The
parameter Msg contains the error value. When
you look in P_1n on how this is used, you see
that in this case the message is just passed back
to the caller of p_1n. The alternatives being
discussed were making writeBuf a procedure
and testing the message value after every call or
having the function return the error value. Both
of these methods involve more source code for
determining if there is an error. Most of the
time you just need to know if there is an error,
not what the error is. The procedure which calls
P_Ln is the place where you need to know what
the error is so as to inform the user. This is the
only place you need to decode the message.
Note that the error or message talked about here
is not a programming error, but a message from
the system that it couldn't do a task (eg. "file not
found™).

{ WDS text input / output unit
{8Q+}

[3.03] -—— 13 apr 88 } {

Ixjm$dinx|£8|e}. }

{$C (c) Wwilliam D. Smith -- 1987 to 1990, Al rights reserved. }
{ File: Tx_Io_U.Text Version 3.03 13 Apr 88
Author: William D. Smith. Phone: (619) 941-4452

P.O. Box 1139
Vista, CA 92083

CIS: 73007,173

Page 20 USUS NewsLetter Mar / Apr 1980

Notice: The information in this document is the exclusive
property of William D. Smith. All rights reserved.
Copyright (c¢) 1987 to 1590.

System: Power System version IV.2.2
Compiler: Power System Pascal Compiler
Keywords: WDS Tx_Io_ U Text Input Output Unit

Description: This unit contains procedures for text input and output.
Change log: (most recent first)

. Date Id Vers Comment
13 Apr 88 WwWDS 3.03 Fixed error in P_In.
09 Mar 88 WDPS 3.01 Added G Ln and moved AppendText to StrOps_U.
14 Feb 88 WDPS 3.00 Started changes needed to use F _Io U.
23 Oct 87 wWDPS 2.08 Added a writeln to CloseFlle when saving.
20 Oct 87 WDS 2.07 Added Vs_Tx Io U and its use.
31 Aug 87 WDS 2.06 Fixed for version IV.22.
17 aug 87 WDPS 2.05 Minor syntax changes, added Caps to AppendText.
16 Jul 87 WDS 2.04 Put in version control.
19 Jun 87 WPS 2.03 Used CapStr from StrOps_U.
08 May 87 WDS 2.02 Used Glbs_U. Removed "Tx * prefix.
29 Rpr 87 WDS 2.01 Changed P_Ln,
27 Apr 87 WDS 2.00 Derived from Text Io (A0S).

{%1 VERSION.TEXT} |{ Declares conditional compilation flags }
unit Tx Yo U;
interface ({$ Tx Jo U [3.03] 13 aApr 88 }

{ This uvnit only works with the Standard File System and on well defined text
files. Each file has a location <loc> {ie. a pointer to the begining of the
current line) which is changed as the file is read. In each of the functions,
Msg is returned as M NoError, the system ioresult, or several other errors
depending on the function. The value returned by the functions is true only
if Msg = M_NoError. OpenText and CloseText use the heap for the fileg"
information block. Be careful if you use mark and release. This unit can be
used to write to volumes like "PRINTER:" but can not be used to read from
volumes like "CONSOLE:" (Msg in OpenText is I_IllegalOp).

}

uges Glbs U; { WDS ‘globals unit }

const V¢ Tx Iio U = 5; { 09 Mar 88 }
Vs_Tx To U = "Tx Io U';

type Openiow = {Tx New, { rewrite, file is write only)}
Tx_01d, { reset, file is read only }
Tx_dppend}; { append, file is write only |}
* Location = record

PgNum : integer; { Page in the file }
ChNum : integer; { Character number in page)
end { Location };

var Vv_Tx To U : integer;
Nullloc : Location: { Unused location }
function P Ln { F : FibPtx;
8 ¢ Str_255;
N : integex;

var Msg : integer) : boolean;
{ Put line. Writes the string § and N end of lines to the file F. N = 0 is
allowed. Msg is M NoError ox ioresult,
}

USLIS NewslLetter Mar / Apr 1890 Page 21

function G_Fstln (F : FibPtr;

var S : Str 255;
var Msg : integer) : boolean;
{ Get first line. This function reads the first line from the file F into §.
Msg can be M NoError, iloresult, or M Empty (file is empty). <loc> is

immediately past the line just read. This function sets the file up to be
read in the forward direction. (ie. After G Fstln, G NxtLn returns the
second line. After G_Fstln, G _Prvln returns the same line and and leaves
<loc> at the begining of file.)

i

function G Nxtin (F : FibPtr;
var S : Str_255;
var Msg : integer) : boolean;
{ Get next line. This function reads the next line f£rom the file F into S.
Msg can be M NoError, ioresult, or ¥ Eof {(at end of file). <loc> is

immediately past the line just read.
}
function G _Curln (¥ : Fibbte;
var 3 : Stx_255;
var Msg : integer) : boolean;
{ Get current line. This function reads the current line from the file F into

S. Msg can be M NoError, ioresult, or M Eof (at end of file}. <loc> is not
changed.
}
function G Prvin (F : FibPtr;
var S : Str_255;
var Msg : integer) : bhoolean;

{ Get previous line. This function reads the previous line from the file F
into 8. Msg can be M NoError, ioresult, or M Bof (at begining of file).
<loc> is at the begining of the line just read.

}

functien G Lstin (F : FibPtr;
var S 1 Str_255;
var Msg : integer) : boolean;

{ Get last line. This function reads the last line from the file F into §.
Msg can be M NoError, ioresult, or M Empty (file is empty). <loc> is at the
begining of the line just read. This function sets the file up to be read
in the reverse direction. (ie. After G LstLn, G _Prvin returns the second to
last line. After G _LstLn, G NxtLn returns the same. line and leaves <loc> at
the end of filel)

}

function G_In (Dir : Direction;
F : FibPtr;
var § : Str_255;
var Msg : integer) : boolean;
{ Get line. This function calls one of the five previous “get" functions
depending on the value of Dir.
}

function Cmploc (Src : Location; Tgt : Location) : CmpType;

{ Compare locations. This function compares the location Src and Tgt and
returns less then (Lt), equal (Eq), or greater then (Gt).

}

function GetLoc (Dir : Direction;
F ;s FibPtr;
var Loc : Location;
var Msg : integer) : boolean;
{ Get location. This procedure gets the location in the file F asked for by
Dir. Only F_What, C_What, and L_What are allowed for Dir. This procedure

Page 22 USUS NewsLetter Mar / Apr 1990

is only valid for files opened as Tx 0ld. Loc is returned as NullLoc in all

invalid or error situations. Msg is M NoError or idresult 3 (bad mode) .
}
function SetLoc (F : FibPtr;
var Loc : Location;

var Msg : integer) : boolean;

{ Set location. This procedure sets the current location in the file F. If
the location is not at the begining of a line it is forced to the begining
of the the line. This procedure is only valid for files opened as Tx 01d.
Msg is M NoError or ioresult, :

}

function CpenText {var B : FibPtr;
Name : Str 23;
How : OpenHow;
var Msg : integer) : boolean;

{ Open text file. This function opens the file called Name. F is returned as
a pointer to the file information block (FIB) if the file is opened and as
Closed if the file was not opened. How determines how the file will be
opened. Msg can be M NoError, ioresult, M NoHeap (no room to allocate the
FIB). <loc> is at the begining of the first line.

}

procedure CloseText (var F : FibPtr; Save : boolean);

{ Close text file. The file F is closed and the FIBR is disposed. F is
returned as Closed. Save and how the file was opened determine how the file
is to be closed.

How Save Closed Comment
New true lock New file made permanent
New false purge No file
0ld true normal Filé unchanged
0ld false normal File unchanged
Append true lock File increased in size
Append false crunch File unchanged
}
implementation
uses Kernel (F_BlkSize, F_TypeText, IoRsltWd, FibP, Fib),
F_Jo U; { WDS file I/0 unit }
const Nul = 0;
Eo = 13;
Ple = 16;
Sto = 196;
StrSize = 255; { Maximum size of input/output strings }
BufSize = 512; { BufSize := F_To U .PageSize * 2; }
MaxBuf = 511; { MaxBuf := BufSize - 1; }
BlksInPg = 1;
BlkSize = 512; { Bytes in a block }

USUS NewsLetter Mar / Apr 1990

function Ck_File (F : FibPtr; Ro : boolean;
var Fp : FibP; wvar Msg : integer) : boolean;
begin
if F = Closed then Msg := ord {I_NotOpen)
else
begin

pmachine (*Fp, (F), Sto); { Fp := F; }

if Fp~ .F_ReadOnly = Ro then Msqg := M NoError
else Msg := ord (I_BadMode);
end { else };

Page 23

- Ck_File := Msg = M NoError;

end { Ck_File };

function ReadBuf (Fp : FibP; Back : boolean;
var Msg : integer) : boolean;

{ If Back read F_NxtBlk - 2 else read F_NxtBlk. Set F _NxtByte and F_NxtBlk.

var bone : boolean; F : FibPtr;

begin
Msg := M NoError;
Done := false;
pmachine (*F, (Fp), Sto); { F := Fp; }

with Fp” do begin
repeat
if Back then
if F_NxtBlk <= 3 then Msg := M Bof
else
else if F_NxtBlk >= F_MaxBlk then Msg := M Eof;

if Msg = M NoError then
begin
if Back then F_NxtBlk := F_NxtBlk - 2;

F_NxtBlk := F_NxtBlk +
BlockIo (F, F_Buffer, BlksInPg, F_NxtBlk, true);
Msg := ioresult;

if Msg = M NoError then
if F_Buffer [}] <> chr (Nul) then { Buf not empty |}
begin
Pone := true;

if Back then

F_NxtByte := BufSize + scan (- BufSize, <> chr (Nul),
F_Buffer [MaxBufl})
else F_NxtByte := 0;
end { if if };
end { if };

until Done or (Msg <> M _NoError):;
end { with };

ReadBuf := Msg = M NoError;
end { ReadBuf };

function WriteBuf (Fp : FibP; wvar Msg : integer) : boolean;
{ Write F_NxtBlk. Set F_NxtByte and F_NxtBlk. }
var F : FibPtr;
begin

pmachine (“F, (Fp), Sto): (F := Fp; }

with Fp~ do begin

if F_NxtByte < BufSize then
fillchar (F_Buffer [F_NxtByte], BufSize - F_NxtByte, Nul};

- F_NxtBlk := F_NxtBlk + BlockIo (F, F_Buffer, BlksInPg, F_NxtBlk, false);

F_NxtByte := 0;
end { with };

Msg := ioresult;
WriteBuf := Msg = M _NocError;
end { WriteBuf };

function P_Ln { (F : FibPtr; 8 : Str_255; N : integer;
var Msg : integer) : boolean };
label 1, 2;

Page 24

}

USUS NewsLetter Mar / Apr 1990

var Fp : FibP; I, J : integer; NeedDle : boolean;
begin
if not Ck File (F, false, Fp, Msg) then goto 1;

with Fp™ do begin
if not F_SOftBuf then { CONSQOLE:, PRINTER:, etc. 1}
begin
unitwrite (F _Unit, S5 {1], length (5));

if N > 0 then
begin
if N »= 256 then
begin
£illchar (S [0)], 256, chr (Eol));

repeat
unitwrite (F_Unit, § [0], 256);
N = N - 256;
until N <= 255;
end { if }
else £illchar (S [1], N, chr (Eol)):

if N > 0 then unitwrite (F Unit, S [1], N);

end { if };
end { if }
else { if F_SoftBuf then }
begin
if F_NxtByte = 0 then NeedDle := true
else if F Buffer [F NxtByte - 1] = chr (Eol) then NeedDle := true
else NeedDle := false;

Af N > 0 then { remove spaces from end of string }
S [0} := chr (length (S} + E
scan (- length (S), <> ' ', S {length (S8)1));

if NeedDle then
begin
I :
J -
end {
else
begin
I :=1; J := 0;
if (length (S) = 0) and (N > 0} then { Back up F_NxtByte)}

F_NxtByte := F_NxtByte + scan (- F_NxtByte, <> ' T,
F_Buffer [F_NxtByte - 11);

1 + scan (length (S}, <> ' ', 5 [11);
= 2;
if)

end { else };
ifN>0then J :=J + 1;
J J + (length (S) - I) + 1;

if J <= BufSize - F_NxtByte then goto 2 { fits }
else if not odd (F NxtBlk) then { split line }
begin
if NeedDle then
begin
if F_NxtByte > MaxBuf then
if not WriteBuf (Fp, Msg) then goto 1;

F _Buffer [F _NxtByte] := chr (Dle);
F_NxtByte := F_NxtByte + 1;

if F_NxtByte > MaxBuf then
if not WriteBuf (Fp, Msg) then goto 1;

USUS Newsietter Mar / Apr 1990 ?age 25

F_Buffer [F NxtBytel := chr (31 + I);
F_NxtByte := F_NxtByte + 1;
end { if }:;

if F NxtByte > MaxBuf then
if not WriteBuf (Fp, Msg) then goto 1;

J := (length (S) - I} + 1;

if J + F_NxtByte > BufSize then
J := BufSize - F_NxtByte;

movalaft (S (I, F_Buffer [F_NxtBytel, J);
F_NxtByte := F_NxtByte + J;

if I + J <= length (S) then

begin
I :=1+ J;
J := (length (3) -~ I) + 1;

if F_NxtByte > MaxBuf then
if not WriteBuf (Fp, Msg) then goto 1;

moveleft (S [I], F_Buffer [F_NxtByte], J);
F_NxtByte :~ F_NxtByte + J;
end { if };

if N > 0 then
begin
if F_NxtByte > MaxBuf then
if not WriteBuf (Fp, Msg) then goto 1;

F_Buffer [F_NxtByte] := chr (Eol);
F_NxtByte := F_NxtByte + 1;
N =N - 1;

end { i€ };

end { else if }
else { all in following block }
begin
if not WriteBuf (Fp, Msg) then goto 1;

2:
if NeedDle then

begin
F_Buffer [F_NxtBytel] := chr (Dle);
F_NxtByte := F_NxtByte + 1;
F_Buffer [F_NxtBytel := chxr (31 + I);
F_NxtByte := F_NxtByte + 1;

end { if };

moveleft (S (1], F _Buffer [F_NxtByte], (length (5} - I} + 1);
F_NxtByte := F_NxtByte + (length (S) - I) + 1;

if N > 0 then

begin
F_Buffer [F_NxtByte] := chr (Eol);
EmetByte 1= F_NxtByte + 1;
N := N - 1;

end { if };

end { elsa };

for I := 1 to N do begin
if not P_In (F, '', 1, Msg) then goto 1;
end { for };
end { else };
end { with };
1:

Page 26 USUS NewslLetter Mar / Apr 1990

P_Ln := Msg = M_NoError;
end (P_Ln };

function G Fstln { (F : FibPtr; war § : Str 255;

var Msg : integer) : boolean };
var Fp : FibP;
begin
S [0] :=chr (0); { S :="'"';}
if Ck File (F, true, Fp, Msg) then
begin

with Fp” do begin
if F_NxtBlk = 3 then { block 2 already in buffer }
F_NxtByte := 0
else
begin
F_NxtBlk := 2; { first text block }
F_NxtByte := BufSize; { forces ReadBuf by G_NxtLn }
end { else };
end { with };

if G NxtIn (F, S, Msg) then ;
end { if };

G_Fstln := Msg = M NoError;
end { G Fstln };

function G _NxtLn { (F : FibPtr; war S : Str_255;

var Msg : integer) : boolean };
label 1;
var Fp : FibP; I, J, Si : integer;
function G_Eol : boolean;
begin
with Fp” do begin
I := F_NxtByte + scan (BufSize - F_NxtByte, = chr (Eol),
F_Buffer [F_NxtByte]):
if I = BufSize then
if F Buffer [I - 1] = chr (Nul) then { scan backward }
I :=1I + scan (- (I - F_NxtByte), <> chr (Nul), F Buffer [I - 1]);
J := I - F_NxtByte;

if Si + J > StrSize then

Msg := ord (I_BufOvfl)
else
begin
moveleft (F_Buffer [F_NxtBytel, S [Si + 1], J);
Si := 8i + J;

end { else };
end { with };

G Eol := Msg = M NoError;
end { G_FEol };

begin { G_NxtIn }
S [0] := chr (0);
if not Ck File (F, true, Fp, Msg) then goto 1;

with Fp” do begin
if F NxtByte > MaxBuf then
if not ReadBuf (Fp, false, Msg) then goto 1;

if F_Buffer [F_NxtByte] = chr (Nul) then { no more text in buffer }
if not ReadBuf (Fp, false, Msg) then goto 1;

USUS NewsLetter Mar / Apr 1990 Page 27

if F_Buffer [F_NxtBytel = chx
begin
F NxtByte := F_NxtByte + 1;

if F_NxtByte > MaxBuf then

{(ble) then

if not ReadBuf (Fp, false, Msg) then goto 1;

8i := "
£illchar (s [1], si, ' ");

F_NxtByte :1= F_NxtByte + 1;
if F_NxtByte > MaxBuf then

ord (F Buffer [F_NxtByte]} - 32;

if not ReadBuf (Fp, false, Msg) then goto 1;

end (if }
else 8i := 0;

if not G_Eol then goto 1;
if I > MaxBuf then

begin
if ReadBuf (Fp, false, Msg) then
begin
if not G_Eol then goto 1;
end { if }

else if Msg = M Eof then
Msg := M NoError
else goto 1;
end { if };

F_NxtByte :=
S [0} := chr
end (with };
1:
G _NxtLln := Msg = M NoError;
end { G_NxtIn };

function G _Curlm { (F FibPtr; wvar S
var Msg integer)
var Loc Location;
begin
§ [0] :=chxr (0); (8 :=1''; }

if GetLoc {C_What, F, Loc, Msg) then
if G _NxtIn (F, S, Msag) then
if SetLoc (F, lLoc, Msg) then ;

G_Curln := Msg = M NoError;
end { G_CurIn };

: FibPtr;
var Msg

var S
integer)

function G_Prvim { (F

label 1;

vazr Fp :

begin
5 [0]

FibP; I, J, K, 8i :

= ¢hr (0); { S:="''; }

integer;

Str 255;

: boolean };

Str_255;

: boolean };

if not Ck_File (F, true, Fp, Msg) then goto 1;

with Fp* do begin

if F NxtByte = 0 then

if not ReadBuf (Fp, true, Msg} then goto 1;

I := F_NxtByte - 1;

if F Buffer {I] = chr (Ecl) then
begin

F_NxtByte := I; T :=1 - 1;

Page 28

{ skip Eol }

USUS NewsLetter Mar { Apr 1990

if I < 0 then
if not ReadBuf (Fp, true, Msg) then goto 1
else I := F NxtByte - 1;
end { if }:

I := 1+ 1 + scan (- F NxtByte, = chr (Ecl), F_Buffer [I]):;
if (I > 0) or ({I = 0) and (F Buffer [0] = chr (Dle)}) then { Eol }
begin
if F Buffer [I] = chr {(Dle) then
begin

8i := oxd (F_Buffer [I + 1]) - 32:
£illchaxr (S [1], Si, ' ');
J = I + 2;
end { if }
else begin J :=I; 8i := 0; end { else };

K := F_NxtByte - J;

if Si + K > StrSize then
begin
Msg := ord (I BufOvfl);
goto 1;
end { if }:;

moveleft (F_Buffer [J], 8 [S5i + 11, K);
S [0) := ¢hr (S5i + K):
F_NxtByte := I;
end { if }
else
begin
8i := StrSize - F_NxtByte + 1;

if Si <= 0 then
begin
Msg = oxrd (I_BufOvfl):
goto 1;
end { if };

moveleft (F_Buffer [0]1, S [8i], F NxtByte - I);
K := StrSize -~ 8i + 1;

if ReadBuf (Fp, true, Msg) then
begin
1 := F_NxtByte + scan (- F_NxtByte, = chr (Eol),
F_Buffer [F NxtByte - 11);

if F Buffer [I] = chr (Dle) then
bagin
if I + 1 = F_NxtByte then { expansion in string }
begin
J := ord (5 [S8i]}) -~ 32;

if J + K > StrSize then

begin
Msg ;= ord (I_BufOQvfl);
goto 1;
end { if });
£fillchar (S [1], J, ' "):

moveleft (S [Si], S [J + 11, X):
S [0] := chr (J + K);
end { if }
else

USUS NewslLetter Mar f Apr 1930 Page 29

begin

J := oxrd (F Buffer [I + 1}} - 32;
if J + F_NxtByte - (I + 2) + K > StrSize then
begin
Msg := oxd (I_BufOvfl);
goto 1;
end { if };
fillchar (S [1], g4, ' ');

moveleft (F_Buffer [I + 2], S [J + 13,
F_NxtByte - (I + 2));

moveleft (S [Si], § [J + F_NxtByte - (I + 2) + 1], K};
5 [0] := chr (J + F_NxtByte - (I + 2) + K);
end { else };
end { if }
else if K + F_NxtByte ~ I > StrSize then
begin
Msg := oxrd (I_BufOvil);
goto 1;
end { else if }
else
begin

moveleft (F_Buffer [I], § [1], F_NxtByte - I);
moveleft (S [Si], 5 [F_NxtByte - I + 1], K):
5 [0] := chxr (F_NxtByte - I + K);

end { else };

F_NxtByte := I;
end { if }
else if Msg = M _Bof then
begin
moveleft (S [Si], S [1], K);
5 {0] := chr (K):
Msg := M NoError;

end { else if };
end { else };
end { with };
1:
G_PrvIn := Msg = M _NoError;
end { G_Prvin };

function G_Lstln { (F : FibPtr; wvar § : Str 255;
var Msg : integer) : boolean }:
var Fp : FibP;

begin
5 [0] := chr (0); {8 := "'; }
if Ck_File (F, true, Fp, Msg) then
begin
with Fp* do begin
if F_NxtBlk >= F_MaxBlk then { last block already in buffer }
F_NxtByte := BufSize
else
begin
F_NxtBlk := F MaxBlk + 1; { last block }
F_NxtByte := 0; { forces ReadBuf by G Prvin }
end { else };
end { with };
if G PrvIn (F, S, Msg) then ;
end { if };

Page 30 USUS NewsLetter Mar / Apr 1990

G_LstLn := Msg = M NoError;
end { G_Lstin };

function G In { (Dir : Direction; F : FibPtr;

var S : Str_255; var Msg : integer)

begin
case Dir of
F_What : G _ILn := G_Fstln (F, 5, Msg};
P_What : G In := G_PrvIn (F, 5, Msg}:;
C What : G_Imn := G Curlm (F, 3, Msg);
N _What : G_In := G_NxtLn (F, S, Msg}:
L What : G_Ln := G _LstIn (F, S, Msg) ;

end { cases T;
end { G Ln };

function CmpLoc { (Src : Location; Tgt : Location)
begin
if Src = Tgt then CmpLoc := Egq

else if Src .PgNum > Tgt .PgNum then CmpLoc := Gt
Lt

it

else if Src .PgNum < Tgt .PgNum then CmplLoc
else { if Sxrc .PgNum = Tgt .PgNum then }
if Src .ChNum > Tgt .ChNum then Cmploc := Gt
else if Src¢ .ChNum < Tgt .ChNum then Cmploc :=
else CmpLoc := Eg;
end { CmpLoc };

function GetLoc { (Dir : Direction; F : FibPtr;

var Loc : Location; wvar Msg : integer) : boolean }:

var Fp : FibP;
begin
Loc := NullLoc;

if Ck File (F, true, Fp, Msg) then
with Fp~, Loc do begin
case Dir of

F What : begin PgNum := 1; ChNum := 0; end { case F What)}

C_What : begin
PgNum := (F NxtBlk - 1) div 2;
ChMum := F_NxtByte;

if not odd (F_NxtBlk) then
ChNum := ChNum + BlkSize;
end { case C_What };

L _What : begin
PgNum := {(F MaxBlk - 1) div 2;
ChNum := BufSize + BufSize:
end { case L What };

P_What,
N_What : Msg := orxd (I_IllegalOp);
end { cases };
end { with };

GetLoc := Mag = M NoError;
end { GetLoc };

function Setloc { (F : FibPtr; wvar Loc : Location;
Msg : integer) : boolean };
var Fp : FibP; I : integer;
begin
if Ck_File (F, true, Fp, Msg) then
with Fp”~, Loc do begin
I := PgNum * 2;

USUS NewsLetter Mar { Apr 1990

;: boolean };

CopType i

Page 31

if ChNum >= BlkSize then I := I + 1;

if (I < 2) or (I > F_MaxBlk) then
Msg := oxrd (I_BadBlock)
else
begin
if (I <> ¥ NxtBlk - 1) or (F NxtBlk >= F_MaxBlk) then
begin { need to read block }

F NxtBlk := I;
SetLoc := ReadBuf (Fp, false, Msg);
end [if }
else Msg := M NoError;

if Msg = M NoError then

begin
if ChNum >= BlkSize then F NxtByte := ChNum - BlkSize

else F_NxtByte := ChNum;
if F_NxtByte > 0 then

F_NxtByte := F_NxtByte + scan (- F _NzxtByte, = chr (Eol),
F_Buffer [F NxtByte - 1]);

end { if }
else if Msg = M_Eof then F_NxtByte := 0
else F_NxtByte := BufSize;

end { else };
end { with };

SetLoc (= Msg = M NoErzror;
end { SetLoc };
function QOpenText { (var F ; FibPtr; Name : Str 23; How : OpenHow;

var Msg : integer) : boolean };
var Fp : FibP; 0ld : boolean; S : Str 255;
begin

Msg := M NoError:;

0ld := How <> Tx New;

if OpenFile (F, MName, TxtFile, 0ld, Msg) then

begin
pmachine (“Fp, (F), Sto); { Fp := F; }

with Fp* do bhegin
if F_SoftBuf then
begin
if F_Type <> F_TypeText then
begin
CloseFile (F, false);
Msg := ord (I_BadFileType):;
end { if }
else if How = Tx Append then
begin
F_Readonly := tzrue;

if G LstIln (F, S, Msg) then
if G NxtLn (F, S, Msg) then ;

F_Readonly := false;
end { else if }

else
begin
F_Readonly := How = Tx Old;
F_NxtByte := 0; { undo stuff from open }

end { else };

end { else if }
else if How = Tx Old then { CONSOLE: input not allowed }

Page 32 USUS NewslLetter Mar / Apr 1990

begin
CloseFile (F, false);
Msg := ord (I IllegalOp);
end { else if }
else if F IsBlkd then { Blocked volume I/0 not allowed }
begin
CloseFile (F, false);
Msg := ord (I_BadFileType);
end { else if }
else { PRINTER:, CONSOLE: output, ?? don't need buffer in this gase }
F_Readonly := false;
end { with };
end { if };

OpenText := Msg = M NoError;
end { OpenText };

procedure CloseText { (var F : FibPtr; Save : boolean) };
var Fp : FibP; Msg : integer;
begin
if F <> Closed then
begin
pmachine (“Fp, (F), Sto): { Fp := F;)
with Fp* do begin
if Save and not F_Readonly and F_SoftBuf then
begin
F_NxtByte := F_NxtByte + scan (- F_NxtByte, <> ' ',
F_Buffer [F_NxtByte -~ 1]);:

if F_NxtByte > 0 then
if F_Buffer [F_NxtByte - 1) <> chr (Ecl) then
begin
if F NxtByte > MaxBuf then
if WriteBuf (Fp, Msg) then ;

F_Buffer [F NxtByte] := chr (Eol):
F_NxtByte := F_NxtByte + 1;
end { if }
else
else if odd (F_NxtBlk) then
begin
F_Buffer [F_NxtByte]l := chr (Eol):

F_NxtByte := F_NxtByte + 1;
end { else if };
F_BufChngd := F_NxtByte > 0;
F_Modified := F_BufChngd or (F_NxtBlk > 2);

if F_Modified then F_NxtBlk := F_NxtBlk + 1
else Save := false;
end { if };
end { with };
CloseFile (F, Save):
end { if };
end { CloseText };

begin
Vv_Tx_To U := Vc_Tx Io_U;

‘. Ck_Version (Vv_Glbs_U, Vc_Glbs_U, Vs _Tx Io_U, Vs_Glbs U);
Ck_Version (Vv_F_Io U, Vc_F_Io U, Vs_Tx Io U, Vs_F_Io U);
fillchar (Nullloc, sizeof (NullLoc), 0);

*kk

end {30~ Tx Io U }.

USUS NewsLetter Mar / Apr 1890 nge 33

From The Editor
by Tom Catirall

This issue has taken longer to get out than I'd
like because I decided to go for 36 pages rather
than 24 and it took extra effort to collect
encugh material to fill it out. The Text I/O
Unit article by William Smith is 14 pages and
other material already amounted to more than
10 pages so it wouldn’t all fit in 24 pages and
36 is the next increment.

I’m, still getting the process worked out for pro-
ducing the newsletter. Material comes from
various sources, sometimes voluntarily, some-
times because I see something and ask permis-
sion to use it. Mail from the USUS P.O. Box is
sent on by William Smith. The treasurer’s re-
ports arrive via electronic mail from Bob Clark.
The meeting minutes written up by Keith Fred-
erick also arrive via electronic mail. The letter
and review by James Harding were the first
items that I’ve received as a result of the first
issue. I hope others follow his lead in sending
in any tidbits they have that readers will find
interesting. '

Once enough has been collected and laid out, I
send the pages off to Robert Geeslin in Okla-
homa. He takes them to a local printer and then
about a week later picks up the printed newslet-
ters. In the meantime, I notify Felix Bearden to
run off address labels and send them to Robert.
Robert merges newsletters, labels, and stamps
and then takes it all to the post office. And then
a month later the process starts again.

The last issue was delayed because I either
hadn’t been told about the step of notifying Fe-
lix to send labels, or probably more likely, had
forgot about that step.

Page 34

Previous issues of the newsletter had arrived
here looking like a truck had left tire tracks
across the front and back pages. I asked Robert
if he had seen this but as his copy is handled
locally, it didn’t have this. He took photocopies
of the pages that 1 sent him and discussed it
with the local postmaster. I didn’t hold out a
lot of hope that anything could be done but
somewhat to my surprise, my copy arrived un-
scathed. So, congratulations to Robert for being
so persuasive with the post office.

File Archiving Project

I didn’t get enough time to do anything with
the file archiving project but hope to do so for
the next issue. My current thinking is that
rather than develop something entirely new,
we’d be better off to adopt one of the existing
archive structures. That way, we could ex-
change material with other users that are al-
ready using the archive scheme. From a techni-
cal and availability standpoint, the zoo archive
utility is my first choice. It can handle P-
system style file names and is available on a
wide variety of systems.

If you were to count up the megabytes of infor-
mation stored in each archive format, the ven-
erable arc utility would be the easy winner. For
that reason, it would be nice to have an imple-
mentation of arc that runs on the P-system even
though it won’t handle the file names. The arc
format is also quite a bit more complex to im-
plement than is zoo’s.

I have source code in C for both zoo and arc,

USUS NewslLetter Mar / Apr 1990

and have ported the compression algorithm
used in zoo to Pascal. So, I'd like to get a P-
system zoo archiver going as the first step.
Then if enough resources (volunteers) still ex-
ist, it would be nice to go on'and implement
something to handle arc format.

Board Meetings

Be sure to read the note from Alex Kleider on
Page 6. There wasn’t a quorum at the March
13’th meeting either (Henry and I were the only
board members) so we quickly adjourned to try

again April 11th. Will try using post card re-
minders to make sure everyone is aware-of the
new meeting time: 2nd Wednesday of month at
6:30 PM Pacific time.

If we can ever get a quorum I'd like to suggest
that the board meetings be held less often. Per-
haps every 2 or 3 months. And when meetings
are held, give advance notice by postcard giv-
ing date, time, and agenda. I don’t think that
more frequent meetings are needed now and by
holding fewer meetings but making a big deal
when we do, perhaps everyone will find it easi-
er to remember to attend.

Submission Guidelines

Submit articles to me at the address shown on
the back cover. Electronic mail is probably
best, disks next best, and paper copy is last. If
your article has figures or diagrams, I can use
encapsulated Postscript files in any of the disk
formats listed below. If you can’t produce en-
capsulated Postscript, then paper copy is proba-
bly the only practical method for submitting
graphics.

You can send E-Mail to my Compuserve ID:
72767,622, or indirectly from internet:
72767.622@compuserve.com. For disks, I can
read Sage/Stride/Pinnacle format disks. Also,
any MSDOS 5.25 or 3.5 disks, and 3.5" Amiga
disks. If anyone wants to send Mac format
disks I could probably get someone to translate
them into something I can use. Whatever you
send, please mark on the disk what format it is.
That will save me a lot of guesswork.

Text should be plain ascii rather than a word

USUS NewsLetter Mar / Apr 1990

processor file. It can have carriage returns at
the end of all lines or only at the ends of para-
graphs. What you send doesn’t have to look
pretty. [will take care of that. My spelling
checker will take care of spelling errors too. If
you want special formatting use the following
conventions:

1. _Underline_, put an underline character at
each end of the section to underline.

2. *Bold*, put a star at each end of the section
to bold.

3. *talics”®, put a caret at each end of the sec-
tion to be set in ifalics.

4. ?77Special requests??, such as ?7box next

paragraph?? should be surrounded with "??
7.

Page 35

NewslLetter Editor : Tom Cattrall
Amity Software inc.
7600 Seawood Road SE
Amity, Oregon 97101
503/835-1613
Compuserve : 72767,622
Internet : 72767.622@compuserve.com

NewslL etter Publisher : Robert H. Geeslin £Ed4.D.

S Bo irector

Henry Baumgarten 73447,2754
Tom Cattrall 72767,622

Frank Lawyer 72401,1417
Stephen Pickett 71016,1203
A. Robert Spitzer '75226,3643
USus Officers
President: Alex Kleider 71515,447
Treasurer: Bob Ciark 72747,3126
Secretary: Keith Frederick 73760,3521
USUS Staff

Adm_in"istrator: Felix Bearden 74076,1715
Legal Advisor: David R. Babb 72257,1162

USUS Membershi

Student Members
Regutar Members
Professional Mem

$15 special handli
Mexico.

Write to the lL.a Jol
ship form.

NewsLetter Pu

issue

May / Jun 1290
Jul f Aug 1990

Sep f Oct 1990
Nov / Dec 1990
Jan/ Feb 1990

USUS
P.O. BOX 1148
LA JOLLA, CA 92038

g 28 s

=] '"g "g
43 T

ﬂ = =

g A a

g8 = =

S e

USA20c) faa)

SRR |

ADDRESS CORRECTION REQUESTED
FIRST CLASS MAIL

e
TONTTHERIRERE o

i

	USUS Newsletter V4N2 1990-03_04A.pdf
	USUS Newsletter V4N2 1990-03_04B.pdf

